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Abstract

This paper presents both rigorous results and physical theory on the breakdown

of magnetic flux conservation for ideal plasmas, by nonlinear effects. Our analy-

sis is based upon an effective equation for magnetohydrodynamic (MHD) modes

at length-scales > !, with smaller scales eliminated, as in renormalization-group

methodology. We prove that flux-conservation can be violated for an arbitrarily

small length-scale !, and in the absence of any non-ideality, but only if singular

current sheets and vortex sheets both exist and intersect in sets of large enough

dimension. This result gives analytical support to and rigorous constraints on the-

ories of fast turbulent reconnection. Mathematically, our theorem is analogous to

Onsager’s result on energy dissipation anomaly in hydrodynamic turbulence. As a

physical phenomenon, the breakdown of magnetic-flux conservation in ideal MHD
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is similar to the decay of magnetic flux through a narrow superconducting ring, by

phase-slip of quantized flux lines. The effect should be observable both in numer-

ical MHD simulations and in laboratory plasma experiments at moderately high

magnetic Reynolds numbers.
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1 Introduction

In view of the infinite conductivity, every motion

(perpendicular to the field) of the liquid in relation

to the lines of force is forbidden because it would

give infinite eddy currents. Thus the matter of the

liquid is “fastened” to the lines of force...

H. Alfvén (1942)

It is a fundamental result for an ideal plasma, or perfectly conducting fluid,

that magnetic lines of force are “frozen-in” and move with the fluid. This

fact was first pointed out by Hannes Alfvén in 1942 [1], in the quote above.

About the same time a somewhat stronger result was also observed, that

the magnetic flux through a surface moving with a perfectly conducting fluid

is conserved. For a good historical review of this early work, see [2]. These

properties of magnetic field lines exactly parallel the corresponding properties

established by Helmholtz [3] for vortex lines in an ideal, inviscid fluid. The

results for ideal magnetohydrodynamics (MHD)—the “frozen-in” property of

Email address: eyink@ams.jhu.edu (Gregory L. Eyink and Hussein Aluie).
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field lines and the conservation of magnetic flux—are often referred to together

as “Alfvén’s Theorem”.

One important consequence of these theorems is that magnetic field lines in

a perfectly conducting fluid cannot change their topology. In particular, the

reconnection of crossed magnetic field lines is forbidden (e.g. see [4]). This

poses a bit of a paradox, however. If magnetic field lines are not able to pass

through each other more or less freely, then one would expect them to form a

complicated tangle that would strongly impede plasma motion, or even thwart

it altogether [5]. The theory of ideal plasmas would then be closely analogous

to the statistical mechanics of rubber elasticity, where the entanglements of

polymer chains imply an infinite set of topological constraints, of which the

Gauss linking number is just the simplest [6,7]. However, despite the fact that

near-ideal conditions hold in a wide variety of astrophysical situations (in-

terstellar space, the solar corona, etc.), the behavior of these plasmas is not

at all “rubber-like” but instead essentially fluid-dynamical. The implication

is that reconnection of magnetic field lines occurs at rates that are nearly

independent, or even independent, of the value of the resistivity. Explaining

this phenomenon of “fast reconnection” is a well-known problem of plasma

physics and astrophysics [8,9], with important implications for understanding

dynamo action [10], solar flares and coronal mass ejections [11], etc. Since

Alfvén’s Theorem prohibits reconnection, any fundamental theory of fast re-

connection must explain also the breakdown of those ideal MHD results.

Small Ohmic resistivity (or other non-ideality) implies high magnetic Reynolds

numbers, so that laminar solutions of near-ideal MHD equations will be un-

stable and the plasma motion will generally be turbulent. Theories of fast

turbulent reconnection have been proposed [12,13], which predict magnetic-
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flux reconnection rates that are completely independent of the resistivity. This

implies implicitly the violation of Alfvén’s Theorem under ideal conditions in

turbulent plasmas. Such a breakdown of classical conservation laws of the

fluid equations under turbulent conditions is not unprecedented. For example,

it is well-known that energy is not conserved in the limit of small viscos-

ity for hydrodynamic turbulence, as observed both in laboratory experiments

[14,15,16,17] and high-resolution numerical simulations [18,19]. A fundamental

explanation for this phenomenon was proposed in 1949 by Lars Onsager [20],

who showed that solutions of the ideal incompressible Euler equations do not

need to conserve energy if they are sufficiently singular. More precisely, On-

sager showed that, if the turbulent velocity field is not differentiable in space

but only Hölder continuous with an exponent ≤ 1/3, then the observed rate of

energy dissipation could be explained without any viscosity. See also [21,22,23],

and [24] for a recent review. Onsager’s prediction of near-singularities in tur-

bulent velocity fields with Hölder index ≤ 1/3 has been confirmed by analysis

of high-Reynolds number data from experiments and numerical simulations

[25,26,27].

Recently, one of us (G.E.) has extended Onsager’s results on inviscid energy

disssipation to the breakdown of the Helmholtz-Kelvin Theorem in hydrody-

namic turbulence at high Reynolds number [28,29]. The result proved there

was that conservation of circulations can break down if the velocity field has

near-singularities with Hölder exponent ≤ 1/2, and it was conjectured on

this basis that there would be a “cascade of circulations” for fluid turbu-

lence in three spatial dimensions. This prediction has been confirmed by a

high-resolution numerical simulation [30]. The main purpose of the present

paper is to establish corresponding mathematical results on the breakdown of
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Alfvén’s Theorem for singular solutions of the ideal MHD equations. Despite

the similarity of Alfvén’s result to the Helmholtz-Kelvin Theorem in hydro-

dynamics, there are important differences between the results obtained here

and those established in [28,29]. It turns out that it is much harder to violate

conservation of magnetic flux than it is to violate conservation of circulation.

Hölder continuity exponents that are only moderately small, and far from the

most singular behavior in hydrodynamic turbulence, can produce breakdown

of the Helmholtz-Kelvin Theorem. The main result proved here can be stated

succinctly (but somewhat imprecisely) as follows: Alfvén’s Theorem can break

down in ideal (or near-ideal) magnetohydrodynamics only due to intersecting

current sheets and vortex sheets. The latter are the most singular structures

expected to occur in plasma turbulence and only these, acting together, can

lead to violation of magnetic flux conservation at a rate which is independent

of resistivity. This is a quite striking difference from the hydrodynamic case.

The contents of this paper are as follows: In the following Section 2 we briefly

review the formal statement of Alfvén’s Theorem, its derivations, and its im-

plications for magnetic line reconnection. In the next Section 3 we present the

“filtering approach”, which is the basis of our entire analysis and explain its

relation to theory of distributions (or generalized functions), renormalization

group theory, and large-eddy simulation. In Section 4 we prove the main results

of the paper. In Section 5 we consider the physical possibilities for breakdown

of Alfvén’s Theorem and for ideal reconnection, based upon our rigorous re-

sults. In Section 6 we discuss the possibilities for a “cascade of magnetic flux”

in MHD turbulence and fast turbulent reconnection. Finally, in Section 7 we

restate succinctly our main conclusions.
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2 Alfvén’s Theorem on Magnetic Flux Conservation

We review here briefly some standard derivations of Alfvén’s Theorem(s).

These are based only upon the homogeneous Maxwell equations

∇·B = 0, ∂B/∂t + ∇×E = 0 (1)

and the general Ohm’s law

E + u×B = R, (2)

where R represents an arbitrary non-ideality and u is any time-dependent

velocity field, not necessarily the solution of any fluid equation. For simplicity,

we shall assume here that the velocity is incompressible, ∇·u = 0, although

this is not crucial for the discussion.

The magnetic flux as a Lagrangian variable is defined by

Φ(S, t) =
∫

S(t)

B(t)·dA (3)

where the initial surface S is smooth and oriented, and S(t) is the surface

at later times advected by the velocity field u. The standard proof of flux

conservation uses the easily verified result that

(d/dt)Φ(S, t) =
∫

S(t)

[∂B/∂t − ∇×(u×B)] ·dA, (4)

where the second term in the square bracket represents the change in the flux

due to motion of the surface. For example, see [2] or [31], section §38. Taking
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the curl of Ohm’s law (2) and using Faraday’s law (1), gives

∂B/∂t = ∇×(u×B) − ∇×R. (5)

Substituting this result into (4) and using Stokes Theorem gives

(d/dt)Φ(S, t) = −
∮

C(t)

R·dx (6)

where C(t) = ∂S(t) is the boundary curve of the advected surface S(t). For

∇×R = 0, and in particular for vanishing non-ideality, R = 0, flux conser-

vation immediately follows.

It is a simple consequence of flux-conservation that magnetic flux-tubes—

whose surface normal is everywhere perpendicular to the magnetic field—are

material surfaces. Since magnetic field lines are intersections of magnetic flux

tubes, they must likewise be material lines. Thus, the “frozen-in” property of

magnetic field lines is a direct consequence of flux-conservation. More formally,

the mathematical condition for line preservation is [2]:

[∂B/∂t − ∇×(u×B)]×B = 0.

This is the exact analogue of the Helmholtz-Zorawski condition for preser-

vation of vortex lines under fluid advection [32]. Thus, the condition on the

non-ideality for “frozen-in” magnetic field lines is (∇×R)×B = 0, which is

weaker than the condition ∇×R = 0 for flux-conservation.

There are other derivations of the Alfvén Theorem that reveal more of its

geometric and dynamic significance. The equation (5) with ∇×R = 0 is

equivalent to the equation

∂tF + LuF = 0
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where F = Fij dxi ∧ dxj is the spatial magnetic 2-form and Lu is the Lie-

derivative for the vector field u. Flux-conservation then follows immediately

from the Lie-derivative Theorem [33]. Another derivation can be based upon

the Hamiltonian formulation of ideal magnetohydrodynamics, which possesses

an infinite-dimensional gauge symmetry group corresponding to relabelling of

fluid particles. In this framework, conservation of magnetic flux for all smooth,

oriented surfaces S is a consequence of Noether’s theorem for the relabelling

symmetry [34].

If the fluid flow is continuous, then the “frozen-in” property forbids any change

of magnetic line topology, such as reconnection. A more formal connection with

Alfvén’s Theorem appears in certain theories of B $= 0 magnetic reconnection

[35,36,37], based upon the magnetic loop-voltage

VL =
∮

L

R·dx, (7)

where L is a magnetic field line (which may be closed at infinity). This integral

is the same type of voltage which appears in the flux balance (6), breaking

flux-conservation, and it vanishes under the same condition ∇×R = 0 for

which Alfvén’s Theorem is valid. The magnetic lines L passing through the

region of non-ideality that have extremal values of the loop-voltage are called

reconnection (or separator) lines. Under certain assumptions it can proved that

these lines do not undergo reconnection themselves but drive the reconnection

of neighboring lines [35,36,37]. Thus, the loop-voltages that produce B $= 0

reconnection have the same origin as the voltages from any non-ideality that

violates Alfvén’s Theorem.

8



3 The Filtering Approach and Large-Scale Flux Balance

The proofs of Alfvén’s Theorem discussed in the preceding section all assume,

implicitly, that the solutions u and b 1 of the MHD equations remain smooth

in the limit where the resistivity η (or other non-ideality) tends to zero. How-

ever, those proofs can break down if the solutions become singular in that

limit. To see how this can occur, let us consider the ideal Ohm’s law

e + u×b = 0, (8)

and its curl, using Faraday’s law,

∂b/∂t = ∇×(u×b), (9)

in the case that u and b are singular. In that case, equation (9), in particular,

is not meaningful in a naive sense, because the classical derivative of a non-

smooth function is ill-defined. The natural way to interpret equation (9) is in

the sense of distributions, which means that it must be multiplied by smooth

test functions ϕ(x) and integrated over x, allowing the curl to be shifted to

the test function. (We assume here, for simplicity, that the time-dependence

of the solutions is smooth so that test functions ϕ(x, t) in both variables are

not required.) Because equation (9) is quadratically nonlinear, it is not hard

to see that it is well-defined, in the sense of distributions, whenever u,b ∈ L2,

i.e. are square-integrable, or, physically, have finite energy. In principle, all test

functions in a suitable space—e.g. the set C∞
c (R3) of infinitely-differentiable

1 Hereafter we use Alfvén velocity variables b = B/
√

4πρ0, with ρ0 the plasma

density, rather than magnetic field variables B and the corresponding variable e =

E/
√

4πρ0 rather than the electric field E.
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functions with compact support—should be considered. Fortunately, it is not

necessary to consider all of the test functions in the space, but only a subset

defined by

ϕ!,x(x
′) = $−3G(

x′ − x

$
) (10)

for all 0 < $ < $0 and x ∈ R3, where G is a particular function that satisfies

G ∈ C∞
c (R3), G ≥ 0,

∫

drG(r) = 1 (11)

One may also substitute here a condition of rapid decay of G(r) at large |r|,

faster than any power. For these standard facts of distribution theory, see

[38,39], for example.

There is a more physical way to explain this formulation of the equations (8)

and (9), which makes clear how Alfvén’s Theorem may be broken. Integrating

the solutions u,b with respect to the test function (10) yields

u!(x) =
∫

drG!(r)u(x + r) (12)

and similarly for b!(x), where G!(r) = $−3G(r/$). The fields u!,b! are “coarse-

grained” at length-scale $ or low-pass filtered, retaining information only from

scales > $. These filtered fields satisfy a modified form of Ohm’s law

e! + u!×b! = −ε! (13)

where the subscale electromotive force (EMF)

ε! = (u×b)! − u!×b! (14)
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provides an effective non-ideality. The subscale EMF is also sometimes referred

to as turbulent EMF and, in fact, the present scheme is closely related to the

so-called “filtering approach” used in Large-Eddy Simulation (LES) modelling

of turbulent flows [40,41]. In this approach the filtered version of equation (9),

∂b!/∂t = ∇×(u!×b!) + ∇×ε!, (15)

would be solved, together with similar filtered equations for the velocity, by

employing a closure model for the EMF term ε!.

This same term breaks the validity of flux-conservation for the coarse-grained

fields. In fact, the standard derivations of Alfvén’s Theorem now imply that

(d/dt)Φ!(S, t) ≡ (d/dt)
∫

S!(t)

b!(t)·dA =
∮

C!(t)

ε!·dx. (16)

Here our notations are the same as those in the preceding section, except that

the surface S!(t) and its boundary curve C!(t) are defined to be those advected

by the filtered velocity u!. This “large-scale flux balance” now contains a

source/sink term which can violate Alfvén’s Theorem. The physical origin of

this phenomenon is an effective “drift velocity” ∆u! of the field-lines of the

large-scale magnetic field b! relative to the plasma velocity u!, induced by the

subscale EMF. This drift velocity is not uniquely defined, and its component

∆u
‖
! parallel to the field lines is largely arbitrary, but it always contains a

transverse component [42]:

∆u⊥
! = ε!×b!/|b!|2. (17)

A rather natural prescription to define a drift velocity ∆u! is proposed in

[43]. Because of the additional normal velocity component (17), the field lines
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now slip through the plasma and Alfvén’s “frozen-in” property is violated at

length-scale $.

The violation of Alfvén’s Theorem so far considered is, in some sense, not

“real”. For example, the ideal MHD equations would gain an additional EMF

even for a smooth, laminar solution, if that were filtered at any length-scale

$ > 0. However, for such solutions the subscale EMF would vanish rapidly in

the limit $ → 0 (see following section). We define a real violation of Alfvén’s

Theorem for an ideal MHD solution as one which persists in the limit $ → 0.

This definition can be justified physically by a Renormalization Group (RG)

argument [44]. The dynamical equation (15) for b! is a “renormalized” equa-

tion, obtained by integrating out the high-wavenumber modes. In contrast to

the “bare” equation (9), it contains only observable quantities. An experiment

can measure the velocity and magnetic fields, in fact, only down to a certain

spatial resolution corresponding to a length-scale $. If an experimentalist were

to attempt to verify magnetic flux conservation, then he would be testing its

validity for some coarse-grained fields u!,b! and not for the bare fields u,b.

Because of the subscale EMF, flux conservation would be violated to some

extent for any $ > 0, but the experimentalist would say that flux conservation

was verified if it held with increasing accuracy for finer resolutions $. On the

contrary, the experimentalist would be forced to say that flux conservation was

violated if the effects of the turbulent EMF ε! did not vanish for arbitrarily

small $.

Note that this violation, if present, is entirely an effect of the nonlinearity

and not due to any standard non-ideality, such as Ohmic resistivity or other

anomalous transport coefficients, such as ambipolar diffusion [45,46], Bragin-

skii viscosity [47,48], etc. The direct effect of such non-ideal terms will be
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negligibly small for a sufficiently large length-scale $, much greater than the

dissipation length set by resistivity or than internal plasma lengths, such as

the ion gyroradius and ion skin depth. For example, in the presence of Ohmic

resistivity η, the large-scale effective equation (15) would contain an additional

Laplacian term

η* b!(x) = η$−2
∫

dr (*G)!(r)b(x + r).

For any solution with finite magnetic energy, ‖b‖2 < ∞, the above equation

can be used to provide a bound ‖η * b!‖2 ≤ (const.)(η/$2)‖b‖2. Therefore,

this term vanishes in the limit $ → ∞ with η fixed, or η → 0 with $ fixed. For

a small ratio η/$2 the Ohmic dissipation term is negligible in the large-scale

equation. Of course, for a sufficiently small length-scale $d, these dissipative,

non-ideal effects will be significant. At such small scales, Alfvén’s Theorem will

be violated due to the dissipative, non-ideal effects. However, at lengths $ - $d,

Alfvén’s Theorem can be violated by the subscale EMF due to the nonlinearity.

If both effects exist, then there is no range of length-scales whatsoever where

flux-conservation holds.

In the next section we investigate the properties of the solutions u,b that

permit a persistent effect of the nonlinearity for $ > $d. We find that rather

strong singularities are required.

4 Theorems on Flux Conservation

We now prove several simple theorems on sufficient conditions for conservation

of magnetic flux, or, equivalently, necessary conditions for the breakdown of

flux conservation. A key tool for our analysis is the following formula for the
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subscale EMF

ε!(x) =
∫

drG!(r) δu(r;x)×δb(r;x) −
∫

drG!(r) δu(r;x) ×

∫

drG!(r) δb(r;x)(18)

where δu(r;x) = u(x + r) − u(x) is the velocity increment at point x for

separation vector r and similarly for δb(r;x). The formula (18) is easily verified

by multiplying out the factors and integrating over the separations.

The first point to recognize is that the subscale EMF vanishes nearly every-

where in the limit as $ → 0, under very minimal conditions. For example, let

us assume just that the total energy (kinetic and magnetic) is finite:

E =
1

2

[

‖u‖2
2 + ‖b‖2

2

]

< ∞, (19)

Here ‖u‖2
2 =

∫

Λ dx |u(x)|2 defines the standard L2 norm in the flow domain

Λ, and similarly for ‖b‖2
2. Then the following result holds:

Proposition 1 Let u,b ∈ L2. Then ε! −→L
1

0 as $ → 0.

If the flow domain Λ is infinite, it is more natural to substitute the conditions

that u,b have locally finite energy densities and then the convergence of ε!

to zero is in the local L1 sense.

Proof of Proposition 1: A standard density argument from real analysis shows

that the L2-norms of the increments, ‖δu(r)‖2 and ‖δb(r)‖2, are continuous in

r and, in particular, vanish as r → 0. In fact, by the reverse triangle inequality,

|‖δu(r)‖2 − ‖δu(r′)‖2| ≤ ‖δu(r) − δu(r′)‖2 = ‖u(· + r) − u(· + r′)‖2.
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Since smooth functions are dense in L2, there exists a smooth function u∗ so

that ‖u − u∗‖2 < ε for any ε > 0. Thus, by triangle inequality,

‖u(· + r) − u(· + r′)‖2 ≤ 2ε + ‖u∗(· + r) − u∗(· + r′)‖2.

Since u∗ is smooth, we get

lim sup
r′→r

‖u(· + r) − u(· + r′)‖2 ≤ 2ε.

Since ε > 0 is arbitrary, it follows that limr′→r ‖δu(r′)‖2 = ‖δu(r)‖2, complet-

ing the argument. To finish the proof, we observe by the triangle and Hölder

inequalities applied to (18) that

‖ε!‖1 ≤
∫

drG!(r) ‖δu(r)‖2 ‖δb(r)‖2+
∫

drG!(r) ‖δu(r)‖2

∫

drG!(r) ‖δb(r)‖2.

Since ‖δu(r)‖2 is continuous and vanishes at r = 0, it follows that lim!→0 ‖ε!‖1 =

0. QED

This result is in sharp contrast to that for the analogous “vortex force” in the

hydrodynamic case, f! ≡ (u×ω)! − u!×ω!, which does not need to vanish in

the limit as $ → 0, even if the velocity u is continuous. It was proved in [28]

that f! only needs to vanish if u is Hölder continuous of order greater than

1/2. The Proposition 1 tells us that the limit of the EMF along a subsequence

for $ → 0 vanishes except on a set of Lebesgue measure zero, when the total

energy is finite. However, this result does not imply conservation of flux for

every curve C, since such sets have (three-dimensional) Lebesgue measure zero

and the line-integral of ε! on certain choices of the loop C might not vanish

in the limit.

To get a result on flux conservation, let us prove a spatially local version of

the previous proposition, under stronger assumptions:
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Proposition 2 If either u or b is continuous at point x and if the other is

bounded, then ε!(x) → 0 as $ → 0.

Proof of Proposition 2: Without loss of generality, let us assume that u is

continuous at x and that |b(x′)| ≤ B for x′ ∈ Λ. Then, |δb(r;x)| ≤ 2B and

by the triangle inequality

|ε!(x)|≤
∫

drG!(r) |δu(r;x)| |δb(r;x)|+
∫

drG!(r) |δu(r;x)|
∫

drG!(r) |δb(r;x)|

≤ 4B
∫

drG!(r) |δu(r;x)|.

It follows then that lim!→0 ε!(x) = 0, by continuity of u at x. Note that, if

the filter kernel G is compactly supported in space, then we need only assume

that b is bounded in a small neighborhood of x. QED

This result has the very important implication that, in order to get a non-

vanishing EMF in the limit $ → 0 at a point x, both the velocity and the mag-

netic field must be irregular there, at least discontinuous or even unbounded.

We can now deduce the following simple consequence for flux conservation:

Corollary 1 Let C be a closed, oriented, and rectifiable curve, and let u,b

be bounded functions in a neighborhood of C, such that at least one of them is

continuous at every point of C except for a set of one-dimensional Hausdorff

measure H1 equal to zero. Then,

lim
!→0

∮

C

ε!·dx = 0.

An equivalent statement of this result is that, for Alfvén’s Theorem to break

down, one of the following conditions must hold: either (i) the curve C must

be non-rectifiable, or (ii) at least one of u or b must be unbounded on C, or
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else (iii) the curve C and the set of discontinuities D = Du∩Db of both u and

b must intersect in a set of finite length. More technically, it is required that

H1(C ∩D) > 0, (20)

where H1 is the one-dimensional Hausdorff measure on subsets of R3.

We shall return later to conditions (i) and (ii) in our discussion of turbulent

MHD flows. Here we focus on condition (iii), showing by an example that it

can indeed lead to violation of flux-conservation:

Example 1 Let

u(x) =
1

2
∆u0 sign (y) ı̂

b(x) =
1

2
∆b0 sign (x cosϕ + y sinϕ) [̂ cosϕ− ı̂ sinϕ]

and let G be any spherically symmetric (or even cylindrically symmetric) filter

kernel. Then, on the z-axis

ε!(0, 0, z) =
∆u0∆b0

2π
σ(ϕ) cos(ϕ) k̂, (21)

independent of $, while at all other points lim!→0 ε!(x) = 0. Here σ is the

2π-periodic function defined by

σ(ϕ) =































ϕ −π/2 < ϕ < π/2

π − ϕ π/2 < ϕ < 3π/2

This example consists of a vortex sheet and a current sheet intersecting in a

line, with an angle of π/2 − ϕ between them. The vortex sheet has strength

∆u0 and lies in the xz-plane, while the current sheet has strength ∆b0 and

lies in a plane obtained by rotating the yz-plane around the z-axis by angle ϕ.
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Fig. 1. An intersecting vortex sheet and current sheet viewed along the axis of

intersection (the z-axis). The white strip represents the vortex sheet in the xz-plane.

The black strip represents the current sheet, in the plane obtained by rotating the

yz-plane by angle ϕ around the z-axis. The ± labels on the sides of the sheets

indicate the values of the sign functions in the definition of the velocity and magnetic

field for this example.

(See Figure 1.) To establish (21), note first that for any cylindrically symmetric

filter G the filtered functions u!(x),b!(x) vanish on the z-axis. (In fact, they

vanish on the entire sheets of discontinuity of u and b, respectively.) Thus,
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ε! = (u×b)! on the z-axis. Furthermore, in cylindrical coordinates (r, θ, z),

u(x)×b(x) =
1

4
∆u0 ∆b0 sign (sin(θ))sign (cos(θ − ϕ)) cos(ϕ)k̂.

Thus, for any cylindrically-symmetric filter (not depending upon θ),

ε!(0, 0, z) =
1

8π
∆u0 ∆b0 cos(ϕ)k̂

2π
∫

0

dθ sign (sin(θ))sign (cos(θ − ϕ)).

The integral has the value 4σ(ϕ), giving the result (21). Note that lim!→0 ε!(x) =

0 off the z-axis by our Proposition 2. In fact, this is easy to see directly using

the constancy of u and b off the sheets, so that δu = δb = 0, and formula

(18).

In the above example, consider a smooth loop C that has one segment con-

sisting of an interval along the z-axis of length Lz. Then for any such loop

C,

lim
!→0

∮

C

ε!·dx =
∆u0∆b0

2π
Lzσ(ϕ) cos(ϕ),

if the orientation of the curve is upward along the segment on the z-axis. The

function σ(ϕ) resembles the trigometric sine function, but is piecewise linear,

and its product with cos(ϕ) is nonzero except for ϕ an integer multiple of

π/2. The maximum value in the first quadrant, 0 < ϕ < π/2, occurs for the

solution of cotϕ∗ = ϕ∗, or ϕ∗
.
= 0.8603, an angle a bit larger than π/4. In any

case, for any angle ϕ not an integer mutiple of π/2 and for an infinite set of

loops, flux through the loop C is not conserved, instantaneously, in the limit

as $ → 0.
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5 Physical Breakdown of Alfvén’s Theorem?

In our discussion thus far we have used only the homogeneous Maxwell equa-

tions (1) and the ideal Ohm’s law (8) and, in particular, their consequence,

equation (9), which we repeat here, for convenience, in a somewhat different

form:

∂b/∂t + (u·∇)b = (b·∇)u. (22)

To fully describe an ideal plasma, there must be adjoined also the momentum

equation:

∂u/∂t + (u·∇)u = (b·∇)b− ∇p̃ (23)

where p̃ = p + b2/2 combines the hydrodynamic and magnetic pressure. We

now examine the possibilities for the breakdown of Alfvén’s Theorem in the

context of (22) and (23), the equations of ideal magnetohydrodynamics.

Our Proposition 2 shows that discontinuous solutions are necessary for the

breakdown of flux conservation (or, even worse, unbounded solutions). Of

course, it is well-known that the ideal MHD equations possess solutions that

are piecewise smooth with jump discontinuities on a smooth surface D. A

compressible plasma possesses a richer set of such solutions (including shocks),

but here we restrict ourselves to incompressible fluids. In that case the jump

conditions at the surface D of discontinuity are [49,50]:

∆un = ∆bn = 0 (24)

bn∆ut = (un − vn)∆bt (25)
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(un − vn)∆ut = bn∆bt, ∆p̃ = 0 (26)

Here ∆f for any quantity f denotes its jump across D. un, bn are the compo-

nents of u,b locally normal to the surface and they must have no discontinuity,

by the divergence-free condition. The discontinuities in the tangential compo-

nents ut,bt are related by (25), (26), which follow from (22),(23). Here vn

denotes the velocity of the surface D normal to itself. These equations imply

that |un − vn| = |bn| and thus allow two classes of solutions [49,50]. The first

class has non-zero mass flow across the surface D of discontinuity:

|un − vn| = |bn| $= 0 =⇒ ∆ut = ±∆bt. (27)

The second type has no mass flow across D:

|un − vn| = |bn| = 0 =⇒ ∆ut, ∆bt arbitrary (28)

The second type is called generally a “tangential discontinuity”, or, if both

∆ut and ∆bt are non-zero, a current-vortex sheet.

It is interesting to observe that a single such structure, in isolation, can lead

to no breakdown of Alfvén’s Theorem. If the filter kernel G is spherically

symmetric, then it is easy to see that at a point x ∈ D,

lim
!→0

u!(x) =
1

2
[u+(x) + u−(x)],

where u+(x),u−(x) are the values of velocity u approaching x from either side

of D. Using the similar results for b!, (u×b)! gives immediately that

lim
!→0

ε!(x) =
1

4
∆ut(x)×∆bt(x) (29)
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for x ∈ D. Of course, the limit is zero for x /∈ D. For the type of discon-

tinuity with mass-flow, condition (27) implies that the limit is zero also on

D. The second type of discontinuity, however, a general current-vortex sheet,

can have a nonzero limit for ε! over the entire two-dimensional surface D.

Nevertheless, this EMF cannot lead to a violation of Alfvén’s Theorem in the

limit, because it is everywhere normal to the surface and no non-vanishing

line-integral is possible. Thus, our Example 1 of the preceding section, with

a pair of intersecting sheets, seems the simplest possibility for breakdown of

flux conservation.

Both current sheets and vortex sheets are commonly observed in numerical

simulations of near-ideal MHD equations, for both two-dimensions (2D) and

three-dimensions (3D). We know of no evidence from these simulations for any

worse singularity with unbounded |u| or |b|. This seems to indicate that the

condition (ii) of our Corollary 1 is only an academic possibility, not physically

realized. We shall review here briefly some of the available numerical results,

with no attempt at completeness.

Current sheets and vortex sheets have been observed to develop in a variety

of simulations of freely-decaying 2D-MHD, in approximately ideal conditions.

Initial conditions that have been employed include the Orszag-Tang vortex

or slight modifications [51,52,53] and random initial conditions [52]. The cur-

rent sheets and vortex sheets appear usually in very close proximity. A rather

successful analytical theory was developed in [54] for the formation of these

structures near X-type magnetic null points. Note, however, that there can

be no inviscid breakdown of Alfven’s Theorem in 2D, from current sheets

and vortex sheets, or from any other type of singularity. Indeed, by its defini-

tion, the subscale EMF vector ε! points always normal to the 2D plane and
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therefore no non-vanishing line integral is possible. This is in contrast to the

hydrodynamic case, where a breakdown of the Kelvin Theorem is possible in

2D [28,29,30].

Current sheets and vortex sheets are also observed to develop in simulations of

3D-MHD, at moderate magnetic Reynolds numbers. These have been observed

in freely-evolving flows initialized by a 3D extension of the Orszag-Tang vortex

[55,56], by linked flux rings [56], or by random initial conditions [55], and also

in forced 3D MHD turbulence [57]. The latter work [57] did not study u, b

fields but instead Elsasser variables z± = u ± b, further decomposed into

contributions from shear-Alfvén and pseudo-Alfvén modes. It was found that

all four of these fields form strong sheet-like singularities in close proximity.

Of course, the subscale EMF may be written also in terms of Elsasser fields,

as

ε! =
1

2

[

(z−×z+)! − z−
! ×z+

!

]

, (30)

and intersecting sheets of discontinuity of z+ and z− can generate a non-

vanishing EMF. The simulations in [55] found closely associated sheets for u, b

and they concluded that “vorticity and current display similar features and

are usually intense in adjacent regions.” This paper also studied the dynamics

of these structures, their formation and persistence. The latter is an important

issue, since intersection of vortex and current sheets are required, not only at

an instant but also over some interval of time. By equation (16), the large-scale

magnetic fluxes at two subsequent times t′ > t are related by

Φ!(S, t′) − Φ!(S, t) =

t′
∫

t

dτ
∮

C!(τ)

ε!(τ)·dx. (31)
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(if all non-ideal effects may be ignored at scale $.) Thus, the magnetic flux

will be conserved if the line-integral of the EMF is non-zero only for a set of

times of measure zero. Our Example 1 in the previous section does not address

this issue, because the configuration of intersecting vortex and current sheets

employed there is not a stationary solution of the ideal MHD equations.

Nevertheless, we conjecture that magnetic flux conservation may indeed be

broken in ideal MHD by nonlinear effects. As a physical phenomenon, it should

be analogous to the decay of magnetic flux trapped in a narrow superconduct-

ing ring. According to both theory [58,59,60] and experiment [61,62] this decay

is due to nucleation of quantized magnetic flux lines (by thermal, quantum,

or other fluctuations), which locally destroy the superconducting state. The

quantized flux lines migrate out of the ring, allowing the relative phase across

the point of escape to slip by 2π and generating a voltage pulse around the

ring. Here it is important that the quantized flux lines need not move with

the local superfluid velocity, due primarily to drag forces generated by their

interaction with the background excitations (quasi-particles and holes) [63].

The physics in ideal MHD is similar, with the necessary singularities provided

by the (intersections of) current sheets and vortex sheets. In the presence of

such singularities, the large-scale magnetic field lines do not move with the

plasma velocity at the same scale but gain a “slip velocity” due to their inter-

action with the subscale modes: see eq. (17). The diffusion of the lines of force

of the large-scale magnetic field out of the advected loop implies a voltage

pulse around the loop, which can lead to violation of flux conservation. There

is not only a physical similarity of this process with quantum-phase slip in

superconductors but also, as we discussed in [29], a fairly close formal analogy

as well.
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To complete this section we would like to make a few comments on the relation

of our results to various theories of magnetic line reconnection in MHD. Our

simple Example 1 provides conditions similar to those required in several such

theories. In quasi-2D reconnection, there is an X-type magnetic neutral line

along which the parallel component of the electric field is non-vanishing [4].

Such neutral lines are not structurally stable in 3D, so theories of 3D recon-

nection are often based instead upon neutral points (magnetic nulls) which are

stable [64,65]. These theories require a non-vanishing line-integral of the elec-

tric field along magnetic field lines that connect pairs of nulls (null-null lines).

Finally, theories of B $= 0 reconnection [35,36,37] are based upon magnetic

field-lines of maximum loop voltage (eq.(7)). In our Example 1, the current

sheet is a neutral sheet for the large-scale magnetic field b!, for any $ > 0.

In particular, a neutral line exists along which there is a non-vanishing inte-

gral of the electric field. Adding a smooth external magnetic field with only

a z-component, and non-vanishing on the z-axis, makes this null line a mag-

netic field line with maximal loop-voltage in the limit $ → 0. By adding an

appropriate smooth external magnetic field, this line can also be converted

to a null-null field line. However, all of these constructions are contrived and

clearly inadequate as a general model of fast reconnection (i.e. with rates in-

dependent of resistivity). In the next section we shall indicate what we believe

are some missing ingredients of such a theory.

The most important implication for theories of fast reconnection follows from

Proposition 2 and its Corollary 1. These show that vortex sheets are equally

important as current sheets to obtain non-vanishing reconnection in the ideal

limit. Any successful theory must involve essentially the coincident singulari-

ties of the velocity field u and magnetic field b.
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6 Turbulent Cascade of Magnetic Flux

The results in the present paper are not specific to turbulent plasma flows but

this is one of their most interesting areas of application. The necessary ingredi-

ents to violate Alfvén’s Theorem—singular current and vortex sheets —seem

to exist in MHD turbulence in the limit of high fluid and magnetic Reynolds

numbers. Therefore, we expect that magnetic-flux conservation breaks down

under turbulent conditions. Analogous to the case of fluid velocity circulations

discussed in [28,29,30], we may term this a “cascade of magnetic-flux”. How-

ever, the term “cascade” is not as well warranted here, since the scale-locality

of the process is in serious doubt. Following the discussion in [29,66], the tur-

bulent EMF ε!(x) is infrared (IR) local-in-scale if the Hölder exponents of u,b

at the point x satisfy hu < 1 and hb < 1. Similarly, the turbulent EMF is ultra-

violet (UV) local-in-scale at the point x if the Hölder exponents there satisfy

hu > 0 and hb > 0. This means that the EMF is UV-local away from disconti-

nuities. However it is precisely due to these points that the flux-conservation

is violated! It is possible that UV-locality still holds at such points, but it

requires extensive cancellations between the contributions from length-scales

0 $. This is unlikely if the current sheets and vortex sheets are highly coherent

structures at all length-scales. Thus, it is more likely that UV locality is only

marginal there. This complicates the task of developing adequate theoretical

models for the turbulent EMF ε!(x). For example, the “multi-scale gradient”

expansion that was developed in [67] and applied to the circulation cascade in

[29] is based upon UV-locality. Its application to the cascade of magnetic-flux

in MHD turbulence may thus be only qualitatively successful for $ → 0.

Another complication in turbulent MHD flows is that material curves C(t)
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advected by a velocity field which is not differentiable but only Hölder contin-

uous are expected to become fractal, with a Hausdorff dimension > 1 [68,69].

This is likely to occur in MHD turbulence in the limit of infinite magnetic

and fluid Reynolds numbers. Fractality of material curves provides another

potential mechanism for breakdown of Alfvén’s Theorem, since fractal curves

are non-rectifiable (condition (i) in Corollary 1.) In fact, for fractal curves and

surfaces it is not even clear how to define integrals such as the magnetic-flux

(3) or the loop-voltage (6). One possibility is to write, for example,

∮

C(t)

R(x, t)·dx =
∮

C

RL(a, t)·dx(a, t) (32)

where x(a, t) is the Lagrangian flow map, defined by

(d/dt)x(a, t) = u(x(a, t), t), x(a, t0) = a,

RL(a, t) = R(x(a, t), t) is the non-ideality in a Lagrangian frame, and the

integral on the right side of (32) is defined over the initial loop C at time t0. It

was shown by Young [70,71] that this integral exists in the Stieltjes-sense if the

minimal Hölder exponents hR of RL(a, t) and hx of x(a, t) satisfy hR +hx > 1.

We expect that condition (i) can be removed in Corollary 1 by an application

of such ideas. An interesting laboratory in which to study this question is

the Kazantsev-Kraichnan dynamo model [72,73], for the case of non-smooth

advecting velocity field [74,75,76]. It is expected that advected curves and

surfaces in this model will become fractal, just as in real turbulence [28].

However, the advecting random velocity field is Gaussian and monofractal,

so that there are no vortex sheets (and perhaps no current sheets). Thus,

the effect of fractality of material objects can be studied in isolation. We

conjecture that the magnetic flux is strictly conserved for all surfaces in the
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Kazantsev-Kraichnan model, when the advecting velocity is non-smooth but

Hölder continuous.

Although we expect no direct effect of fractality of the surface S(t) (or of its

boundary C(t)) on conservation of magnetic flux, there can be an indirect

effect. If the Hausdorff dimension of C(t) is > 1, then it increases the proba-

bility of a nontrivial intersection of the loop with the discontinuity set D of u

and b (cf. eq.(20)). If the Hausdorff dimensions of the current-vortex sheets

are > 2, then the dimension of their typical intersection D will be > 1 and

this will also enhance the probability of condition (20) being satisfied. Most

phenomenological models of intermittency in MHD turbulence have assumed

that the Hausdorff dimension of the sheets is exactly equal to 2 [77,78,79,80].

However, it is plausible to expect that turbulent advection on all scales will

lead to wrinkling of the sheets, increasing their dimensionality to values > 2.

A similar effect will appear due to the spontaneous stochasticity of magnetic

field-lines in the limit of infinite magnetic Reynolds numbers. Field lines ξ(σ, t)

are defined in principle at each time t by solving the ODE (in the parameter

σ related to arclength s by ds = |b|dσ)

(d/dσ)ξ(σ, t) = b(ξ(σ, t), t), ξ(0, t) = ξ0 (33)

for the given magnetic field b(x, t). However, in the limit of infinite magnetic

Reynolds number, the magnetic field is non-smooth and, in fact, probably

nowhere-differentiable. In that case, the solutions of (33) are not only fractal

but also presumably random. This line-stochasticity can arise mathematically

from the non-uniqueness of the solutions of the initial-value problem (33) when

b is non-smooth. Physically, it corresponds to a turbulent diffusion in the ar-
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clength parameter s, analogous to Richardson diffusion of material particles

in hydrodynamic turbulence [81]. This phenomenon of “spontaneous stochas-

ticity” was first noted for Lagrangian trajectories in the Kraichnan model of

random advection [82,83]. It has since been rigorously proved in the Kraichnan

model that the solutions for the Lagrangian trajectories correspond to a ran-

dom process, with a fixed initial condition x0 for the fluid particle and a fixed

advecting velocity u [84,85]. These considerations carry over plausibly also

to the equation (33) for the magnetic field-lines. Such stochastic effects will

increase the likelihood of magnetic field-lines intersecting the singular set D.

Note that this type of random field-line wandering is a crucial part of current

theories of fast turbulent reconnection [12,13].

7 Conclusions

The results presented in this paper support theories of fast turbulent recon-

nection [12,13,5], in a general way, but also place rigorous constraints upon

them. A basic assumption of those theories is that Alfvén’s Theorem may

be violated in the limit of vanishing resistivity. We have shown that this is

possible by an analysis of the MHD equations for an ideal plasma. However,

in contrast to Kelvin’s circulation theorem, which is rather easily violated

[28,29,30], Alfvén’s theorem on magnetic-flux conservation is much more ro-

bust. We have proved that violations of it are only possible, essentially, if

singular vortex sheets and current sheets have intersections with high enough

dimension and persist long enough in time. These results should help to guide

further theoretical, numerical, and experimental work.

We have shown, in particular, that it is crucial to understand the physical
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properties of the subscale EMF, defined by eq.(14). At large enough length-

scales $, this quantity is the critical driver of magnetic line reconnection and

any non-ideality at small scales is irrelevant. To explain the fast rates of recon-

nection observed in astrophysical situations, where many decades of inertial

range are often observed, a quantitative theory for the turbulent EMF must

be developed.

The predicted breakdown of magnetic-flux conservation in ideal MHD, as a

physical phenomenon, is closely analogous to the decay by quantum phase-slip

of magnetic flux confined in a superconducting ring. It should be observable

both in numerical simulations and in laboratory experiments at moderately

high Reynolds numbers.
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